Need any help?1300 769 290

Blog

What's up with hand tools these days?

Posted on 25 Sep, 2015
What's up with hand tools these days?

It seems more and more big brand manufacturers are getting their tools made in China or India with substandard materials and design but still charging premium prices.

We recently decided to offer the PB Swiss Tools range of hand tools. They offer a no compromise, top-of-the line range of hand tools, 100% made in Switzerland. They use the highest quality steels, they feel fantastic in your hand, look great (professional) and they last a lifetime.  We have uploaded a selection of their various screw assembly related hand tools, but the full range also includes striking tools (mallets, punches, chisels etc) as well as special tools like picks, scribes, awls, hose pluckers and titanium tools.

Screwdrivers:

High quality PB Swiss Tools screwdrivers with ergonomic Swissgrip handles.

High quality PB Swiss Tools screwdrivers with ergonomic Swissgrip handles.

PB Swiss Tools screwdrivers feature the distinctive Swissgrip handles as well as precise, high quality steel drives.

The Swissgrip handle is made of two components.  It feels good in your hand, is slip free, resistant to oils and provides grip even if you have wet hands.

 

Allen Keys:  Available in sets or individually.

High quality, Swiss made, colour coded Allen Keys

High quality, Swiss made, colour coded Allen Keys

For every Allen key, the tolerances are guaranteed to be less than a hair width. This perfect dimensional accuracy and the hard and tough special alloying make for precise, durable tools.

Available finishes include:

  • High quality chrome plating
  • Rainbow finish – colour coded wrenches let you find the right key faster
  • Gold plated – for corrosive environments or for that extra touch of class?
  • Titanium – totally non magnetic for mining & oil & gas applications

 

 

T Handle Wrenches:

PB Swiss Cross Handle Wrenches

Ergonomic cross handle wrenches

Okay so we are biased, but these have to be the best T handle wrenches on the market!  They are tough, the handles are ergonomic – soft non slip grip and they look the goods.

 

 

 

 

Ratchet Drivers:

Precise, durable and smooth ratchet drive screwdriver

Precise, durable and smooth ratchet drive screwdriver

 

The ideal tool for fast tightening & loosening of screws featuring the famous Swiss Grip handles.  Unlike most other ratchet screwdrivers, these are made to be used every day as you favorite tool, and to outlast your car!

 

Screwdriving tools and feeding technology for the cleanroom

Posted on 20 Sep, 2015
Screwdriving tools and feeding technology for the cleanroom

Dirt or dust particles can cause damage to some products or the system into which the sub-assembly will be integrated.

In these situations it is important to avoid abrasion, reduce abrasion or target its removal! These are the basic requirements for screwdriving assembly in clean rooms to ensure the quality of the components to be processed. The DEPRAG CleanFeed Concept provides an overall solution.

Advantage: Integrated design for technical cleanliness. Deprag’s complete program is coordinated for all required individual components,  from the feeder to the screwdriver, semi automatic or fully automatic – all from one source.

Function: The screws are stopped in switch position 1 and the residual dirt is removed from the feed parts  via vacuum suction. The removed dirt particles are then collected in a filter with transparent inspection window and a replaceable filter element. In switch position 2 the cleaned connection element is fed into the screwdriving module (inline version) or prepared for pick up (Pick&Place version).

The components below can be used to obtain an optimal result:

 

Low abrasion parts feeder

Low abrasion parts feeder

  • DEPRAG HSF sword feeder – vibration free screw feeding – therefore no component friction and minimal abrasion

 

 

 

 

Removes particles for the feed tube

Removes particles for the feed tube

  • DEPRAG Particle killer – dirt particles from the feeder are targeted and removed in-line

 

 

 

 

 

Clean room pick point for screws

Clean room pick point for screws

  • DEPRAG Clean Pick-and Place unit – Screws are fed to to the pick point in the unit, which also has a vacuum to remove particles

 

 

 

 

Clean room ready Screwdriver

Clean room ready Screwdriver

  • DEPRAG SFM-V vacuum screwdriving module, which fits onto the screwdriver – residual dirt is removed by suction via an additional vacuum source when positioning the screwdriver.

Are air tools and air motors safe for use in hazardous areas?

Posted on 17 Aug, 2015
Are air tools and air motors safe for use in hazardous areas?

Air tools and air motors are still assumed to be safe for use in explosive environments and in underground mines, but are they really?  How safe is “safe”?

The simple answer is yes, in general air tools are safe for use in hazardous areas, but not always.  Many types of cutting & grinding tools are not safe no matter what type of motor they use – for example grinders.  Other tools like drills, hacksaws, impact wrenches and air motors are widely considered to be safe. The issue is how safe are they really?

ATEX approvals show that motors and tools have been tested and are safe to use in the indicated temperature zones.

ATEX approvals show that motors and tools have been tested and are safe to use in the indicated temperature zones.

Depending on the cutting speed, some drills and air hacksaws are not safe for use in hazardous areas at all.  Also the quality of the motor and it’s components can lead to overheating of the bearings.

Some gases and dusts can explode at very low temperatures, for example carbon disulfide can ignite at 90 degC.

So what temperature does the air tool or air motor run at?

Do all air powered motors run at the same temperature?

Of course of course they don’t.

ATEX approvals were introduced in the EU to certify the safety of equipment that is going to be used in hazardous areas.  All tools and equipment that have ATEX approvals are marked with a code that identifies:

  • Which zone the equipment is safe to be used
  • What temperature range the tool operates
  • If the tool is suitable for operations where explosive gas and/or dust is present
  • Whether the tools is safe for underground or general industrial use

ATEX approvals clarify whether or not an air tool or air motor is safe to use in a particular hazardous area thereby avoiding assumptions about safety that can lead to serious injuries or catastrophic explosions.

Our full range of air hacksaws are ATEX approved some for underground, but most for above ground use.

Most of our air motors in the Advanced Line and Basic Line ranges are ATEX approved for use around explosive gases and dusts.

Our Undergound mining impact wrenches are also ATEX approved for use in underground coal mines.

Green Energy Turbine use examples

Posted on 27 Jul, 2015

Deprag’s Green Energy Turbine generator can be used in either a direct or an indirect configuration.

Direct Configuration:

Direct use of gas turbine generator for green energy

Direct use of gas turbine generator for green energy

In a direct configuration a high pressure gas is run through the turbine. Electricity, lower pressure and lower temperature gas is the result.

 

Some examples include:

  • Energy recovery in metal smelters
    Turn wasted hot compressed air into electricty

    Turn wasted hot compressed air into electricty

     

    • often molten metal is cooled by compressed air.  The compressed air flows through cooling tubes and is normally exhausted to the atmosphere.  The hot, compressed air can be run through the GET and the recovered electricity can be either used by the smelter or fed back to the grid

 

  • Pressure regulation in gas mains
    We can recover wasted energy from reducing the pressure in gas pipelines

    We can recover wasted energy from reducing the pressure in gas pipelines

     

    • natural gas is transported long distances at high pressure.  When it reaches regional areas, the gas pressure has to be lowered.  The pressure is lowered again when before it reaches homes at a local station.  A GET can be used to recover the energy wasted in the pressure reduction.
    • Note, the gas will cool though the process so, it is necessary to pre-heat it before entering the turbine.
  • Carbon sequestration / geothermal
    • Carbon dioxide that is captured from power stations can be compressed and injected into underground reservoirs.  Whilst being stored in the underground caverns the Carbon dioxide is heated by geothermal energy.  The heated carbon dioxide can be expanded through a GET and then re-injected into the reservoir.

 

Indirect Configuration:

The Green Energy Turbine can be used indirectly, for example as a part of an ORC process to capture waste heat.

The Green Energy Turbine can be used indirectly, for example as a part of an ORC process to capture waste heat.

In an indirect configuration the GET is used as part of a waste heat recovery system – for example an ORC (organic rankine cycle).  In such a system a refrigerant gas extracts heat from an object or medium which increases the temperature and pressure of the gas.  This pressurised gas is directed through a GET, which turns the turbine and results in lower temperature, lower pressure gas and electricity.

 

Some examples include:

  • Biogas waste heat recovery
    Systems already exist for large Biogas producers, however Deprag's GET helps small producers to recover energy

    Systems already exist for large Biogas producers, however Deprag’s GET helps small producers to recover energy

    • Deprag supplies low power (from 5kW) units to help smaller producers extract electricity from heat that would normally be wasted.

 

  • Recovering heat out of industrial hot water
    • Deprag is supplying the GET to a company who can extract electricity from hot water.  Hot water is produced in various industrial processes, for example large ship engines, geothermal energy, solar energy and the power industry.  The potential for this already proven technology is enormous and game changing in the green energy and energy recovery industries.

Green Energy Turbine Generator

Posted on 23 Jul, 2015

Deprag’s Green Energy Turbine generator can be used in either a direct or an indirect configuration.

Direct Configuration:

Direct use of gas turbine generator for green energy

Direct use of gas turbine generator for green energy

In a direct configuration a high pressure gas is run through the turbine. Electricity, lower pressure and lower temperature gas is the result.

 

 

 

 

 

 

Some examples include:

  • Energy recovery in metal smelters
    Turn wasted hot compressed air into electricty

    Turn wasted hot compressed air into electricty

    • often molten metal is cooled by compressed air.  The compressed air flows through cooling tubes and is normally exhausted to the atmosphere.  The hot, compressed air can be run through the GET and the recovered electricity can be either used by the smelter or fed back to the grid

 

 

 

 

  • Pressure regulation in gas mains
    We can recover wasted energy from reducing the pressure in gas pipelines

    We can recover wasted energy from reducing the pressure in gas pipelines

    • natural gas is transported long distances at high pressure.  When it reaches regional areas, the gas pressure has to be lowered.  The pressure is lowered again when before it reaches homes at a local station.  A GET can be used to recover the energy wasted in the pressure reduction.
    • Note, the gas will cool though the process so, it is necessary to pre-heat it before entering the turbine.

 

 

 

 

  • Carbon sequestration / geothermal
    • Carbon dioxide that is captured from power stations can be compressed and injected into underground reservoirs.  Whilst being stored in the underground caverns the Carbon dioxide is heated by geothermal energy.  The heated carbon dioxide can be expanded through a GET and then re-injected into the reservoir.

 

Indirect Configuration:

The Green Energy Turbine can be used indirectly, for example as a part of an ORC process to capture waste heat.

The Green Energy Turbine can be used indirectly, for example as a part of an ORC process to capture waste heat.

In an indirect configuration the GET is used as part of a waste heat recovery system – for example an ORC (organic rankine cycle).  In such a system a refrigerant gas extracts heat from an object or medium which increases the temperature and pressure of the gas.  This pressurised gas is directed through a GET, which turns the turbine and results in lower temperature, lower pressure gas and electricity.

 

 

 

 

 

Some examples include:

  • Biogas waste heat recovery
    Systems already exist for large Biogas producers, however Deprag's GET helps small producers to recover energy

    Systems already exist for large Biogas producers, however Deprag’s GET helps small producers to recover energy

    • Deprag supplies low power (from 5kW) units to help smaller producers extract electricity from heat that would normally be wasted.

 

 

 

 

 

 

  • Recovering heat out of industrial hot water
    • Deprag is supplying the GET to a company who can extract electricity from hot water.  Hot water is produced in various industrial processes, for example large ship engines, geothermal energy, solar energy and the power industry.  The potential for this already proven technology is enormous and game changing in the green energy and energy recovery industries.